
2021/10/07 21:35 1/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

Transitioning to SLURM from Maui/Torque

THE Grid Feup is changing the cluster to utilize Slurm as its scheduler.

There will be some differences to the current setup (Torque/Maui), but it is not a big learning curve.

We also provide a wrapper for the Torque commands to run on this Slurm cluster so you can try
submitting your current script to the new cluster and notice the difference.

Slurm website can be found here: http://slurm.schedmd.com/

Guide to SLURM from LLNL
Summary: http://slurm.schedmd.com/pdfs/summary.pdf
Tutorials: http://slurm.schedmd.com/tutorials.html
Documentation: http://slurm.schedmd.com/documentation.html
Comparison between PBS/TORQUE & SLURM: http://slurm.schedmd.com/rosetta.html
Exit Codes

The outline of the command differences between Slurm and Torque are available at
http://slurm.schedmd.com/rosetta.html & http://slurm.schedmd.com/documentation.html

Important Notes

The current scheduler (Maui/Torque) will be decommissioned by the end of September 2019.
So, start transitioning to SLURM - ssh to slurmsub.grid.fe.up.pt (via submit.grid.fe.up.pt) .
The slurm script generator can be found at
https://grid.fe.up.pt/web/index.php?page=slurm_job_script_generator .
The wrappers have been created. So, most of the torque commands (such as qsub) that you are
used to should work fine. However, please start mastering SLURM commands.
The same PBS batch script can be used with the addition of the line “#!/bin/bash” on the top of
the file in most of the cases. See the SLURM Environment variable section below.
For complicated job submission, we recommend you to understand the SLURM syntax.
SLURM command “srun” does not seem to work properly when used within MPI context with the
following error. So, don't use srun for parallel jobs.

srun -n 4 hello_mpi
srun: error: Unable to create job step: More processors requested than
permitted

Some more details (adapted from ACCRE documentation) [1]:

1. Introduction

SLURM (Simple Linux Utility for Resource Management) is a software package for submitting,
scheduling, and monitoring jobs on large compute clusters. This page details how to use SLURM for
submitting and monitoring jobs on Grid Feup cluster. New cluster users should consult our Getting
Started pages, which is designed to walk you through the process of creating a job script, submitting
a job to the cluster, monitoring jobs, checking job usage statistics, and understanding our cluster

http://slurm.schedmd.com/
https://hpc.llnl.gov/banks-jobs/running-jobs
http://slurm.schedmd.com/pdfs/summary.pdf
http://slurm.schedmd.com/tutorials.html
http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/rosetta.html
https://sites.google.com/a/case.edu/hpc-upgraded-cluster/cluster-faq/running-jobs/exit-code-status
http://slurm.schedmd.com/rosetta.html
http://slurm.schedmd.com/documentation.html
https://grid.fe.up.pt/web/index.php?page=slurm_job_script_generator
http://www.accre.vanderbilt.edu/?page_id=2154
http://slurm.schedmd.com/

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

policies.

Grid currently used Torque for resource management and Maui for job scheduling, and users
submitted a job to Grid Feup by writing a script specifying the resources and commands needed to
execute a program. SLURM also requires users to submit jobs through a script, with slightly different
syntax compared to Torque/Maui. These differences are highlighted in section 2. A summary of
SLURM commands is shown in section 3. (A great reference for SLURM commands can also be found
by clicking here.)

2. SLURM vs. Torque

2.1. Job Submission

2.1.1. Batch

Converting a Torque batch script to SLURM is generally a straightforward process. Below is a simple
SLURM script (right hand side) for running a Matlab job requesting 1 node, 1 CPU core, 500 MB of
RAM, and 2 hours of wall time. For comparison, the equivalent Torque script is shown on the left.
Aside from syntax, the two scripts have only very minor differences. In general, #SBATCH options
tend to be more self-explanatory. Note that specifying the node (#SBATCH –nodes=1) and CPU core
(#SBATCH –ntasks=1) count must be broken off into two lines in SLURM, and that SLURM has no
equivalent to #PBS -j oe (SLURM combines standard output and error into a single file by default).

Torque/Maui script - simple.pbs Slurm script - simple.slurm
#!/bin/bash

#PBS -M your@email.address #SBATCH –mail-user=your@email.address
#PBS -m bae #SBATCH –mail-type=ALL
#PBS -l nodes=1:ppn=1 #SBATCH –nodes=1

#SBATCH –cpus-per-task=1
#PBS -l walltime=2:00:00 #SBATCH –time=2:00:00
#PBS -l mem=500mb # Note: mem is total
memory per job

#SBATCH –mem=500m # Note: –mem is memory per
node

#PBS -o matlab_job.out #SBATCH -o matlab_job.o%j
#PBS -j oe
cd $PBS_O_WORKDIR
cp -r * $PFSDIR cp -r * $PFSDIR
cd $PFSDIR cd $PFSDIR
module load matlab module load matlab
matlab -singleCompThread -nodisplay -r
fixedMC matlab -singleCompThread -nodisplay -r fixedMC

cp * $PBS_O_WORKDIR/. cp * $SLURM_SUBMIT_DIR

A SLURM batch script must begin with the #!/bin/bash directive on the first line. The subsequent
lines begin with the SLURM directive #SBATCH followed by a resource request or other pertinent job
information. Email alerts will be sent to the specified address when the job begins, aborts, and ends.

http://slurm.schedmd.com/pdfs/summary.pdf

2021/10/07 21:35 3/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

Submit the batch job:

sbatch simple.slurm #slurm
qsub simple.pbs #PBS

(Note that the file extensions .pbs and .slurm are only for convenience.)

2.1.2. Interactive

srun can be used to run interactive jobs, with or without graphics

srun --x11 -n 1 -c 2 --time=1:00:00 --pty /bin/bash

Note: This will launch two cpus per task (-c 2) with a single task (-n 1) for 1 hour (–time=1:00:00),
with graphical windows (–x11) ready. If you want to request, let's say, 100 hrs, you can do it as
–time=4-04:00:00 in the the format: “days-hours:minutes:seconds”.

For GPU, it becomes:

srun --constraint=GPU -n 1 -c 2 --time=1:00:00 --mem=5gb --pty /bin/bash

Note: This will request a node with gpu feature (–constraint=GPU) with memory-per-node 5gb
(–mem=5gb).

For reference, the following table lists common Torque options along side the equivalent option in
SLURM. For examples of how to include the appropriate SLURM options for parallel jobs, please refer
to Section 4.

Request a Specific Node:

srun --nodelist=avafat01 --pty bash

It is requesting avafat01. It is useful when we want to use a specific node only. Please be mindful that
you might have to wait until the node is free to use if someone else is running a job in that node.

Exclude a particular node or multiple nodes from running your jobs:

srun --exclude=ava01,ava02 --pty bash

If you want to exclude many nodes, create a file (e.g. ava01-10) with the nodelist as showed:

ava01,ava02,ava03,ava04,ava05,ava06,ava07,ava08,ava09,ava10

And run it as:

srun --exclude=./ava01-10 --pty bash

If you want to reserve the whole 12 processors comp node, you can use, hex keyword (hex⇒ 6 cores;
12 processors): srun -n 12 -C hex24gb –pty bash

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

For 16 processors comp node, use octa (octa ⇒ 8 cores; 16 processors):

srun -n 12 -C octa64gb --pty bash

You need to specify the queue type (e.g. batch, int) to use the resources available in nodes in those
queue. For example, to request 32 processors in a node, you need to use the nodes in batch queue (-
q batch).

srun -p batch -n 32 --mem=5gb --pty bash

Command Torque/MAUI Slurm
submit command qsub sbatch, srun, salloc

walltime request #PBS -l walltime hh:mm:ss #SBATCH –time=hh:mm:ss
(or -t hh:mm:ss)

specific node
request

#PBS -l
nodes=X:ppn=Y:gpus=2

#SBATCH –nodes=X (or -N X)
#SBATCH –cpus-per-task=Y(or -c Y)[for OpenMP or
hybrid code]
#SBATCH –ntasks-per-node=Y(or -n Y)[to set equal
of tasks/node or MPI]
#SBATCH –n Z [set total number of tasks]
#SBATCH –gres=gpu:2

define memory #PBS -l mem=Zgb #SBATCH –mem=Zgb

define number of
procs/node

#SBATCH -c <# of cpus/task> → for
OpenMP/hybrid jobs
#SBATCH -n <# of total tasks or processors → for
MPI jobs

queue request #PBS -q batch #SBATCH -p batch

group account #PBS -A <account or
GorupID> #SBATCH -A <account or GroupID>

job name #PBS -N <name> #SBATCH -J <name>

output file name #PBS -O <filename> #SBATCH -o <name>.o%j
where %j is the jobID

email option #PBS -m e #SBATCH –mail-type=end
options: begin,end,fail,all

email address #PBS -M <email address> #SBATCH –mail-user=<email>

count processors NPROCS=`wc -l <
$PBS_NODEFILE

NPROCS=$(($SLURM_NNODES *
$SLURM_CPUS_PER_TASK))#for OpenMP &
hybrid (MPI + OpenMP) jobs

NPROCS=$SLURM_NPROCS or $SLURM_NTASKS
#for MPI jobs
Note: -N 4 -n 16 ⇒ 16 processors NOT 4*16=64
processors

if $PBS_NODEFILE is needed, then include the
following lines:
PBS_NODEFILE=`generate_pbs_nodefile`
NPROCS=`wc -l < $PBS_NODEFILE `

starting directory
on the compute
node

user home directory the working (submit) directory

2021/10/07 21:35 5/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

Command Torque/MAUI Slurm
interactive job
request qsub -I -X srun --x11 --pty /bin/bash

Reserve the node exclusively srun --exclusive --pty /bin/bash
dependency #PBS -d <jobid> #SBATCH -d <after:jobid>

2.2. Important Examples

2.2.1. Account

Maui/Torque:

#PBS -A <caseID>_share

SLURM:

#SBATCH -A <caseID>

2.2.2. Processor count

MPI Job:

Request 2 nodes (-N 2) with total 4 processors (-n 4)

srun -N 2 -n 4 --pty bash

Use Slurm env variable “$SLURM_NTASKS” to get the total number of processors

NPROCS=$SLURM_NTASKS

Check

echo $NPROCS
4

(Note: -n gives the number of processors. So, 4 processors (-n 4) from two nodes (-N 2)

OpenMP or Hybrid Job:

Request two tasks (-N 2) with 4 processors per task (-c 4)

srun -N 2 -c 4 --pty bash

Use Slurm env variables “$SLURM_NTASKS & $SLURM_CPUS_PER_TASK” to get the total number of
processors.

NPROCS=$(($SLURM_NTASKS*$SLURM_CPUS_PER_TASK))

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

Check:

echo $NPROCS
8

Note: Two tasks (-N 2) with 4 CPUS/processors per task (-c 4) gives total of 2*4=8 processors.

3. SLURM Commands

Just like Torque, SLURM offers a number of helpful commands for tasks ranging from job submission
and monitoring to modifying resource requests for jobs that have already been submitted to the
queue. Below is a list of SLURM commands, as well as the Torque equivalent in the far left column.

Torque SLURM Function
qsub [job_script] sbatch [job_script] Job submission
qstat or showq squeue Job/Queue status
qdel [JOB_ID] scancel [JOB_ID] Job deletion
pbsnodes scontrol show nodes Node list
qhold [JOB_ID] scontrol hold [JOB_ID] Job hold
qrls [JOB_ID] scontrol release [JOB_ID] Job release
qstat -a sinfo Cluster status
qsub -I salloc Launch interactive job

srun [command] Launch (parallel) job step
sacct Displays job accounting information

Similar command to “qstat”

squeue -u <caseID>

3.1. sbatch

The sbatch command is used for submitting jobs to the cluster. Like Torque’s qsub, sbatch accepts a
number of options either from the command line, or (more typically) from a batch script. An example
of a SLURM batch script (called simple.slurm) is shown below:

#!/bin/bash
#SBATCH -N 1
#SBATCH -c 1
#SBATCH --mem-per-cpu=1G
#SBATCH --time=0-00:15:00 # 30 minutes
#SBATCH --output=my.stdout
#SBATCH --mail-user=your@email.address
#SBATCH --mail-type=ALL
#SBATCH --job-name="just_a_test"

Put commands for executing job below this line
This example is loading Python 2.7.8 and then

2021/10/07 21:35 7/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

writing out the version of Python
module load python
python --version

To submit this batch script, a user would type:

sbatch simple.slurm

This job (called just_a_test) requests 1 compute node, 1 task (by default, SLURM will assign 1 CPU
core per task), 1 GB of RAM per CPU core, and 15 minutes of wall time (the time required for the job
to complete). Note that these are the defaults for any job, but it is good practice to include these lines
in a SLURM script in case you need to request additional resources.

Optionally, any #SBATCH line may be replaced with an equivalent command-line option. For instance,
the #SBATCH –ntasks=1 line could be removed and a user could specify this option from the
command line using:

sbatch --ntasks=1 simple.slurm

The commands needed to execute a program must be included beneath all #SBATCH commands.
Lines beginning with the # symbol (without /bin/bash or SBATCH) are comment lines that are not
executed by the shell. The example above simply prints the version of Python loaded in a user’s path.
It is good practice to include any setpkgs commands in your SLURM script. A real job would likely do
something more complex than the example above, such as read in a Python file for processing by the
Python interpreter.

For more information about sbatch see: http://slurm.schedmd.com/sbatch.html

3.2. squeue

squeue is used for viewing the status of jobs. By default, squeue will output the following information
about currently running jobs and jobs waiting in the queue: Job ID, Partition, Job Name, User Name,
Job Status, Run Time, Node Count, and Node List. There are a large number of command-line options
available for customizing the information provided by squeue. Below are a list of examples:

Command Meaning
squeue –-long Provide more job information
squeue –-user=USER_ID Provide information for USER_ID’s jobs

squeue –-account=ACCOUNT_ID Provide information for jobs running
under ACCOUNT_ID

squeue –-states=running Show running jobs only
squeue –-Format=account,username,numcpus,state,timeleft Customize output of squeue

squeue –-start List estimated start time for queued
jobs

squeue –-help Show all options

For more information about squeue see: http://slurm.schedmd.com/squeue.html

Similar command to “showq” or “qstat”

http://slurm.schedmd.com/sbatch.html
http://slurm.schedmd.com/squeue.html

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

squeue -u jbarber

output:

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 661587 batch bash jbarber R 22:21 1 ava10

Note the jobID (661587), status of the Job (R→ Running) and the compute node (ava10) that the job is
running.

Want to see details such as why your job is in PD (pending) state, in which node your job is running.

sq

output:

730814 batch slurm.sl bga11 PD 0:00 1 4 6950
(AssocMaxWallDurationPerJobLimi
 730815 batch slurm.sl bga11 PD 0:00 1 4
6950 (AssocMaxWallDurationPerJobLimi
..
 989833 batch 3DClasse txh310 R 21:59:56 16 240 3044
comp145t,comp146t,comp147t,comp149t,comp151t,comp154t,comp156t,comp157t,comp
158t,comp159t,comp179t,comp185t,comp186t,comp187t,comp191t,comp192t
 992383 batch job_chec sxl1036 R 1:43:13 2 16
3007 comp122t,comp123t

Also, show the start time and end time of the job which is equivalent to Torque/Maui Showstart

squeue -u <CaseID> -o "%.9i %.9P %.8j %.8u %.2t %.10M %.6D %S %e"

output:

JOBID PARTITION NAME USER ST TIME NODES START_TIME END_TIME
 676101 batch JOB jbarber PD 0:00 1 2018-04-09T15:25:21
 606057 batch JOB jbarber R 8-01:08:45 1 2018-03-31T14:17:02
2018-04-31T14:17:02
 606056 batch JOB jbarber R 8-01:10:16 1 2018-03-31T14:15:31
2018-03-31T14:15:31

The job 676101 is estimated to start on April 09 at 15:25 and the end time of job 606057 is April 31 at
14:17.

Filtering squeue output through awk may be useful, for example, to isolate entries with group name in
common:

squeue -o "%A %C %e %E %g %l %m %N %T %u" | awk 'NR==1 || /eecs600/'

output:

2021/10/07 21:35 9/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

 JOBID CPUS END_TIME DEPENDENCY GROUP TIME_LIMIT MIN_MEMORY NODELIST
STATE USER

 148137 1 2018-01-26T16:54:22 eecs600 2:00:00 1900 ava01 RUNNING jbarber

 148146 1 2018-01-27T01:14:27 eecs600 10:00:00 1900 ava02 RUNNING
ptsilva

Note the jobs status for the users in a group eecs600

3.3. sacct

This command is used for viewing information for completed jobs. This can be useful for monitoring
job progress or diagnosing problems that occurred during job execution. By default, sacct will report
Job ID, Job Name, Partition, Account, Allocated CPU Cores, Job State, and Exit Code for all of the
current user’s jobs that completed since midnight of the current day. Many options are available for
modifying the information output by sacct:

Command Meaning

sacct -–starttime 12.04.14 Show information since
midnight of Dec 4, 2014

sacct –-allusers Show information for all
users

sacct –-accounts=ACCOUNT_ID Show information for all
users under ACCOUNT_ID

sacct –-format=”JobID,user,account,elapsed,
Timelimit,MaxRSS,ReqMem,MaxVMSize,ncpus,ExitCode” Show listed job information

sacct –-help Show all options

The –format option is particularly useful, as it allows a user to customize output of job usage statistics.
We would suggest create an alias for running a customized version of sacct. For instance, the elapsed
and Timelimit arguments allow for a comparison of allocated vs. actual wall time. MaxRSS and
MaxVMSize shows maximum RAM and virtual memory usage information for a job, respectively, while
ReqMem reports the amount of RAM requested.

See the status of your job. Note that your executable should be preceded by “srun” command for
both serial and MPI executable.

sacct -o
JobID,JobName,AveCPU,AvePages,AveRSS,MaxRSSNode,AveVMSize,NTasks,State,ExitC
ode -j <jobID>

output:

 JobID JobName AveCPU AvePages AveRSS MaxRSSNode AveVMSize
NTasks State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
-- -------- ---------- --------

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

1013605 v2o5band
COMPLETED 0:0

1013605.bat+ batch 00:00:00 0 6244K ava01 308544K
1 COMPLETED 0:0

For more information about sacct see: http://slurm.schedmd.com/sacct.html

3.4. scancel

It kills the job. It is the equivalent of Torque/Maui “qdel” command. Example:

scancel -i 681457

prompt:

Cancel job_id=681457 name=bash partition=batch [y/n]? y
srun: Force Terminated job 681457

3.5. scontrol

scontrol is used for monitoring and modifying queued jobs. One of its most powerful options is the
scontrol show job option, which is analogous to Torque’s checkjob command. scontrol is also used for
holding and releasing jobs. Below is a list of useful scontrol commands:

Command Meaning
scontrol show job JOB_ID Show information for queued or running job
scontrol hold JOB_ID Place hold on job
scontrol release JOB_ID Release hold on job
scontrol show nodes Show hardware details for nodes on cluster
scontrol update JobID=JOB_ID
Timelimit=1-12:00:00 Change wall time to 1 day 12 hours

scontrol update dependency=JOB_ID Add job dependency so that job only starts after
JOB_ID completes

scontrol –help Show all options

Note: The equivalent qstat -f <JOB_ID> & checkjob Maui/Torque command in SLURM is scontrol show
job <JOB_ID>

scontrol show job 136355

output:

JobId=136355 JobName=xxxxx

 UserId=xxxx(yyyy) GroupId=xxx(yyy)

http://slurm.schedmd.com/sacct.html

2021/10/07 21:35 11/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

 Priority=3007 Nice=0 Account=gray QOS=normal

 JobState=RUNNING Reason=None Dependency=(null)

 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

 RunTime=20:07:27 TimeLimit=13-07:00:00 TimeMin=N/A

 SubmitTime=2018-01-18T15:37:55 EligibleTime=2018-01-18T15:37:55

 StartTime=2018-01-18T15:37:56 EndTime=2018-01-31T22:37:56

 PreemptTime=None SuspendTime=None SecsPreSuspend=0

 Partition=batch AllocNode:Sid=hpctest:39249

 ReqNodeList=(null) ExcNodeList=(null)

 NodeList=ava10

 BatchHost=ava10

 NumNodes=1 NumCPUs=8 CPUs/Task=1 ReqB:S:C:T=0:0:*:*

 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*

 MinCPUsNode=1 MinMemoryNode=48G MinTmpDiskNode=0

 Features=(null) Gres=(null) Reservation=(null)

 Shared=OK Contiguous=0 Licenses=(null) Network=(null)

 Command=/home/xxxx/AAA.sh

 WorkDir=/home/xxxx/BBB

 StdErr=/home/xxxx/OOO.o

 StdIn=/dev/null

 StdOut=/home/xxx/OOOO.o

 Power= SICP=0

If the job is pending, it will show the reason for pending as well:

...
JobState=PENDING
Reason=ReqNodeNotAvail(Unavailable:ava07,ava08,ava09,ava20,ava21,ava22)
Dependency=(null)

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

Here, it shows that the job is waiting for the resources. The gpu featured nodes are listed because
they are currently offline.

SLURM command equivalent to pbsnodes <node>

scontrol show node ava04

output:

NodeName=ava04 Arch=x86_64 CoresPerSocket=1
 CPUAlloc=0 CPUErr=0 CPUTot=16 CPULoad=15.06
 AvailableFeatures=(null)
 ActiveFeatures=(null)
 Gres=(null)
 NodeAddr=ava04 NodeHostName=ava04 Version=17.11
 OS=Linux 3.10.0-693.21.1.el7.x86_64 #1 SMP Wed Mar 7 13:12:24 CST 2018
 RealMemory=68000 AllocMem=0 FreeMem=8298 Sockets=16 Boards=1
 State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
 Partitions=batch,big
 BootTime=2018-04-20T12:15:29 SlurmdStartTime=2018-11-13T17:23:23
 CfgTRES=cpu=16,mem=68000M,billing=16
 AllocTRES=
 CapWatts=n/a
 CurrentWatts=0 LowestJoules=0 ConsumedJoules=0
 ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

Here, the number of processors (ncpus) is 16, and available Memory (availmem) is 68000 (~ 68gb).

You can also see the slurm configuration info:

scontrol show config

output:

Configuration data as of 2018-03-08T10:39:08
AccountingStorageBackupHost = (null)
AccountingStorageEnforce = associations,limits
AccountingStorageHost = smaster
...

Check the MaxJobCount

scontrol show config | grep MaxJobCount
MaxJobCount = 10000

For more information about scontrol see: http://slurm.schedmd.com/scontrol.html

3.6. srun

http://slurm.schedmd.com/scontrol.html

2021/10/07 21:35 13/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

srun can be used to run interactive jobs, with or without graphics

srun --x11 -N 1 -c 2 --time=1:00:00 --pty /bin/bash

This will launch two tasks on a single node for 1 hour, with graphical windows ready.

This command can also be used to launch a parallel job step. Typically, srun is invoked from a SLURM
job script to launch a MPI job (much in the same way that mpirun or mpiexec are used). More details
about running MPI jobs within SLURM are provided below. Please note that your application must
include MPI code in order to run in parallel across multiple CPU cores using srun. Invoking srun on a
non-MPI command or executable will result in this program being independently run X times on each
of the CPU cores in the allocation.

Alternatively, srun can be run directly from the command line on a gateway, in which case srun will
first create a resource allocation for running the parallel job. The -n [CPU_CORES] option is passed to
specify the number of CPU cores for launching the parallel job step. For example, running the
following command from the command line will obtain an allocation consisting of 16 CPU cores and
then run the command hostname across these cores:

srun -n 16 hostname

For more information about srun see: http://www.schedmd.com/slurmdocs/srun.html

3.7 sinfo

sinfo allows users to view information about SLURM nodes and partitions. A partition is a set of nodes
(usually a cluster) defined by the cluster administrator. Below are a few example uses of sinfo:

Command Meaning
sinfo –Nel Displays info in a node-oriented format
sinfo –partition=big Get information about big nodes
sinfo –states=IDLE Displays info about idle nodes
sinfo –help Show all options

Note: If you want to get the detailed options equivalent to “showq” and “mdiag -n”

sinfo -a -o "%P %a %l %D %N %C"

output:

PARTITION AVAIL TIMELIMIT NODES NODELIST CPUS(A/I/O/T)
int* up 1-00:00:00 12 magalhaes[01-12] 0/68/32/100

Here, (A/I/O/T) represents “allocated/idle/other (offline/down)/total”.

Equivalent to “mdiag -n”:

sinfo -p batch -Nle -o '%n %C %t'

http://www.schedmd.com/slurmdocs/srun.html

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

Reasons for possible node failure:

sinfo -R

For more information about sinfo see: http://slurm.schedmd.com/sinfo.html

3.8. sreport

seport is used for generating reports of job usage and cluster utilization. It queries the SLURM
database to obtain this information. By default information will be shown for jobs run since midnight
of the current day. Some examples:

Command Meaning
sreport cluster utilization Show cluster utilization report

sreport user top Show top 10 cluster users based on total CPU
time

sreport cluster AccountUtilizationByUser
start=2018-12-01

Show account usage per user dating back to
December 1, 2018

sreport job sizesbyaccount PrintJobCount Show number of jobs run on a per-group basis
sreport –help Show all options

For more information about sreport see: http://slurm.schedmd.com/sreport.html

3.9. sstat

Display various status information of a running job/step (Refer to SLURM man page).

sstat -j <jobID>

Very Important: If you are submitting the job using sbatch, please include srun before your
executable in your SLURM batch script as showed:

srun ./<executable>

Selecting the fields of interest

sstat -p --format=AveCPU,AvePages,AveRSS,MaxRSSNode,AveVMSize,NTasks,JobID -
j 661587

output:

AveCPU|AvePages|AveRSS|MaxRSSNode|AveVMSize|NTasks|JobID|

00:00.000|0|2264K|ava20|119472K|1|661587.0|

To estimate how much memory is being consumed by run a top comamnd in the node where your job
is running.

http://slurm.schedmd.com/sinfo.html
http://slurm.schedmd.com/sreport.html
http://slurm.schedmd.com/sstat.html

2021/10/07 21:35 15/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

sq | grep <caseID>

output:

 1958082 batch Tumor-PIPE-a <caseID> R 19:40:29 1 4
1002 ava20

ssh -t ava20 top

output:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21348 jxw773 20 0 14.9g 14g 1072 S 400.0 22.6 678:30.15 bwa

Note the 22.6% of 64gb comes out to be about 15gb of memory.

4. Parallel Job Example Scripts

Below are example SLURM scripts for jobs employing parallel processing. In general, parallel jobs can
be separated into four categories:

Distributed memory programs that include explicit support for message passing between
processes (e.g. MPI). These processes execute across multiple CPU cores and/or nodes.
Multithreaded programs that include explicit support for shared memory processing via multiple
threads of execution (e.g. Posix Threads or OpenMP) running across multiple CPU cores.
Embarrassingly parallel analysis in which multiple instances of the same program execute on
multiple data files simultaneously, with each instance running independently from others on its
own allocated resources (i.e. CPUs and memory). SLURM job arrays offer a simple mechanism
for achieving this.
GPU (graphics processing unit) programs including explicit support for offloading to the device
via languages like CUDA or OpenCL.

It is important to understand the capabilities and limitations of an application in order to fully leverage
the parallel processing options available on the cluster. For instance, many popular scientific
computing languages like Python, R, and Matlab now offer packages that allow for GPU or
multithreaded processing, especially for matrix and vector operations.

4.1. MPI Jobs

Jobs running MPI (Message Passing Interface) code require special attention within SLURM. SLURM
allocates and launches MPI jobs differently depending on the version of MPI used (e.g. OpenMPI,
MPICH2, Intel MPI).

#!/bin/bash
#SBATCH --mail-user=your@email.address
#SBATCH --mail-type=ALL
#SBATCH -N 3
#SBATCH -n 24 # 8 MPI processes per node

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

#SBATCH --time=7-00:00:00
#SBATCH --mem=4G # 4 GB RAM per node
#SBATCH --output=mpi_job_slurm.log

module load openmpi
echo $SLURM_JOB_NODELIST

Assign the number of processors
NPROCS=$SLURM_NTASKS

#Run the job
mpirun -n $NPROCS ./test

This example requests 3 nodes and 8 tasks (i.e. processes) per node, for a total of 24 MPI
tasks. It is recommended for you to just use “-n” option ONLY for automatic load balancing. By
default, SLURM allocates 1 CPU core per process, so this job will run across 24 CPU cores. Note that
mpirun/mpiexec accepts -n <number cpus>). Please avoid using srun command to run parallel jobs at
this time, since it does not seem to work well.

Executables generated with older versions of OpenMPI or MPICH2 should be launched using these
packages’ native mpirun or mpiexec commands rather than SLURM’s srun. Such programs may run
under SLURM but in some cases they may not.

More information about running MPI jobs within SLURM can be found here here:
http://slurm.schedmd.com/mpi_guide.html.

4.2. Multithreaded Jobs (OpenMP)

Multithreaded programs are applications that are able to execute in parallel across multiple CPU cores
within a single node using a shared memory execution model. In general, a multithreaded application
uses a single process (i.e. “task” in SLURM) which then spawns multiple threads of execution. By
default, SLURM allocates 1 CPU core per task. In order to make use of multiple CPU cores in a
multithreaded program, one must include the –cpus-per-task option. Below is an example of a
multithreaded program requesting 4 CPU cores per task. The program itself is responsible for
spawning the appropriate number of threads.

#!/bin/bash
#SBATCH -N 1
#SBATCH --cpus-per-task=4 # 4 threads per task
#SBATCH --time=02:00:00 # two hours
#SBATCH --mem=4G
#SBATCH --output=multithread.out
#SBATCH --mail-user=your@email.address
#SBATCH --mail-type=ALL
#SBATCH --job-name=multithreaded_example

#Export Number of Threads
NPROCS=$(($SLURM_NNODES * $SLURM_CPUS_PER_TASK))
export OMP_NUM_THREADS=$NPROCS

http://slurm.schedmd.com/mpi_guide.html

2021/10/07 21:35 17/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

Run multi-threaded application
./hello

4.3. Job Arrays

Job arrays are useful for submitting and managing a large number of similar jobs. As an example, job
arrays are convenient if a user wishes to run the same analysis on 100 different files. SLURM provides
job array environment variables that allow multiple versions of input files to be easily referenced. In
the example below, three input files called vectorization_0.py, vectorization_1.py, and
vectorization_2.py are used as input for three independent Python jobs:

#!/bin/bash
#SBATCH --mail-user=your@email.address
#SBATCH --mail-type=ALL
#SBATCH -c 1
#SBATCH --time=2:00:00
#SBATCH --mem=2G
#SBATCH --array=0-2
#SBATCH --output=python_array_job_slurm_%A_%a.out

echo "SLURM_JOBID: " $SLURM_JOBID
echo "SLURM_ARRAY_TASK_ID: " $SLURM_ARRAY_TASK_ID
echo "SLURM_ARRAY_JOB_ID: " $SLURM_ARRAY_JOB_ID

module load python
python < vectorization_${SLURM_ARRAY_TASK_ID}.py

The #SBATCH –array=0-2 line specifies the array size (3) and array indices (0, 1, and 2). These
indices are referenced through the SLURM_ARRAY_TASK_ID environment variable in the final line of
the SLURM batch script to independently analyze the three input files. Each Python instance will
receive its own resource allocation; in this case, each instance is allocated 1 CPU core (and 1 node), 2
hours of wall time, and 5 GB of RAM.

One implication of allocating resources per task is that the node count will not apply across all tasks,
so specifying –nodes=1 will not limit all tasks within an array to a single node. To limit the total
number of CPU cores (and thus tasks) used simultaneously, use %[CPU_COUNT] following the –array=
option. For example, –array=0-100%4 will limit the tasks to running on 4 CPU cores simultaneously.
This means the tasks will execute in batches of 4 until all 100 tasks have completed.

The –array= option is flexible in terms of the index range and stride length. For instance,
–array=0-10:2 would give indices of 0, 2, 4, 6, 8, and 10.

The %A and %a variables provide a method for directing standard output to separate files. %A
references the SLURM_ARRAY_JOB_ID while %a references SLURM_ARRAY_TASK_ID. SLURM treats job
ID information for job arrays in the following way: each task within the array has the same
SLURM_ARRAY_JOB_ID, and its own unique SLURM_JOBID and SLURM_ARRAY_TASK_ID. The JOBID
shown from squeue is formatted by SLURM_ARRAY_JOB_ID followed by an underscore and the
SLURM_ARRAY_TASK_ID.

While the previous example provides a relatively simple method for running analyses in parallel, it

Last update: 2020/05/28 11:16 documentation:slurm https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

https://grid.fe.up.pt/dokuwiki/ Printed on 2021/10/07 21:35

can at times be inconvenient to rename files so that they may be easy indexed from within a job
array. The following example provides a method for analyzing files with arbitrary file names, provided
they are all stored in a sub-directory named data:

#!/bin/bash
#SBATCH --mail-user=your@email.address
#SBATCH --mail-type=ALL
#SBATCH -c 1
#SBATCH --time=2:00:00
#SBATCH --mem=2G
#SBATCH --array=1-5 # In this example we have 5 files to analyze
#SBATCH --output=python_array_job_slurm_%A_%a.out
arrayfile=`ls data/ | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line)
print $0}'`
module load python
python < data/$arrayfile

More information can be found here: http://slurm.schedmd.com/job_array.html

8. Torque Wrappers

Torque wrappers are distributed with SLURM to ease the transition from Torque to SLURM. Wrappers
are available for virtually all the common Torque commands, including qsub, qstat, qdel, qhold, qrls,
and pbsnodes. These wrappers are designed to function in the same way as their Torque
counterparts, with support for many of the same options and flags. Therefore, users may be able to
run their old Torque scripts without converting them (or with minimal modifications) to SLURM syntax.
These jobs will still be managed by SLURM, but to the user it will still “feel” like a Torque environment.

While the Torque wrappers should aid the transition from Torque to SLURM, in the long run we
encourage users to convert their job scripts to SLURM. There are a number of reasons for converting
to SLURM. The first reason is that native SLURM scripts offer increased flexibility and control over
jobs. As the SLURM code base continues to expand, it is unlikely that the Torque wrappers will be fully
supported and able to handle more advanced use cases. Troubleshooting and debugging of Torque
scripts will also be more difficult.

9. SLURM Environment Variables

Variable Meaning
SLURM_JOBID Job ID
SLURM_SUBMIT_DIR Job submission directory
SLURM_SUBMIT_HOST Name of host from which job was submitted
SLURM_JOB_NODELIST Names of nodes allocated to job
SLURM_ARRAY_TASK_ID Task id within job array
SLURM_JOB_CPUS_PER_NODE # of procs per node allocated to job (for OpenMP type of jobs)
SLURM_NNODES Number of nodes allocated to job
SLURM_NPROCS # of procs allocated to job (for MPItype of jobs)

Each of these environment variables can be referenced from a SLURM batch script using the $ symbol

http://slurm.schedmd.com/job_array.html

2021/10/07 21:35 19/19 Transitioning to SLURM from Maui/Torque

GRID FEUP - https://grid.fe.up.pt/dokuwiki/

before the name of the variable (e.g. echo $SLURM_JOBID) A full list of SLURM environment variables
can be found here: http://slurm.schedmd.com/sbatch.html#lbAF

References:

[1] ACCRE documentation

[2] HPC University of Maryland

From:
https://grid.fe.up.pt/dokuwiki/ - GRID FEUP

Permanent link:
https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

Last update: 2020/05/28 11:16

http://slurm.schedmd.com/sbatch.html#lbAF
http://www.accre.vanderbilt.edu/?page_id=2154
https://www.glue.umd.edu/hpcc/help/slurm-vs-maui.html
https://grid.fe.up.pt/dokuwiki/
https://grid.fe.up.pt/dokuwiki/doku.php?id=documentation:slurm

	Transitioning to SLURM from Maui/Torque
	Important Notes
	1. Introduction
	2. SLURM vs. Torque
	2.1. Job Submission
	2.1.1. Batch
	2.1.2. Interactive

	2.2. Important Examples
	2.2.1. Account
	2.2.2. Processor count

	3. SLURM Commands
	3.1. sbatch
	3.2. squeue
	3.3. sacct
	3.4. scancel
	3.5. scontrol
	3.6. srun
	3.7 sinfo
	3.8. sreport
	3.9. sstat

	4. Parallel Job Example Scripts
	4.1. MPI Jobs
	4.2. Multithreaded Jobs (OpenMP)
	4.3. Job Arrays

	8. Torque Wrappers
	9. SLURM Environment Variables

